20 research outputs found

    Particle emission rates during electrostatic spray deposition of TiO2 nanoparticle-based photoactive coating

    Get PDF
    A new method for the covalent and specific labeling of fusion proteins of carrier proteins (CPs) with small organic molecules has been developed in this work. This technology combines the convenience of expressing genetically tagged reporter proteins with the versatility of synthetic organic molecules. Moreover it promises to overcome some of the limitations of the currently used approaches. The method is based on the posttranslational modification of CPs by phosphopantetheine transferase (PPTase). In this reaction, the 4'-phosphopantetheine group of coenzyme A (CoA) is transferred to a serine residue of CP by PPTase. The PPTase can also use as substrates CoA derivatives that are modified in the thiol moiety by fluorophores or affinity reporter groups that are transferred to CP by PPTase in a covalent and irreversible manner. In this work, several CoA derivatives were synthesized by coupling of CoA with reporter groups functionalized by maleimide. The labeling method using the acyl carrier protein (ACP) and the PPTase (AcpS) from E. coli was applied to the in vitro labeling of purified proteins or in E. coli and yeast lysates, but also to the labeling of proteins expressed on cell surfaces of yeast and mammalian cells. The labeling reaction is fast, specific and quantitative. Pulse-chase labeling experiments with different fluorophores allowed the visualization of different protein generations on yeast cell surfaces. Thus, the method was demonstrated to be attractive for fluorescence microscopy. The second objective was to create a system for the selective labeling of different CPs with different CoA derivatives in the same sample, which requires PPTases with different specificities. The labeling must be performed sequentially, in order that each CP is labeled with only one CoA derivative. The pair peptidyl carrier protein (PCP) from B. brevis and the PPTase from B. subtilis (Sfp) was chosen as counterpart of the pair ACP / AcpS from E. coli. AcpS that is specific towards ACP is used for the first labeling reaction, and after a washing step to remove excess of substrate, the second labeling is performed with Sfp which is promiscuous. The system was successfully tested in vitro in solution and with proteins immobilized on microarrays, and on the surface of yeast and mammalian cells. Finally, the last objective was to reduce the size of the carrier protein (∌ 80 amino acids) to a minimal motif that is efficiently recognized by the PPTase. ACP and PCP were truncated before and after helix II whose residues are involved in the recognition by AcpS and Sfp. The fragments of ACP (aa 27-50) and PCP (aa 37-59) were labeled by AcpS and Sfp respectively, but the kinetics of labeling was slow. Two libraries were created with randomization of the six amino acids around the modified serine. Selections were performed using a phage display system based on the phagemid technology. Mt1 (32 aa) was modified by AcpS at the same rate as wild type ACP. Additional truncations of mt1 sequence yielded mt1.4 (16 aa) that was efficiently recognized by AcpS and weakly by Sfp. In conclusion, this labeling method should become an important tool for studies of cell surface proteins as well as for in vitro applications

    A communal catalogue reveals Earth’s multiscale microbial diversity

    Get PDF
    Our growing awareness of the microbial world’s importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth’s microbial diversity

    Regulated Emissions and Detailed Particle Characterisation for Diesel and RME Biodiesel Fuel Combustion with Varying EGR in a Heavy-Duty Engine

    No full text
    This study investigates particulate matter (PM) and regulated emissions from renewable rapeseed oil methyl ester (RME) biodiesel in pure and blended forms and contrasts that to conventional diesel fuel. Environmental and health concerns are the major motivation for combustion engines research, especially finding sustainable alternatives to fossil fuels and reducing diesel PM emissions. Fatty acid methyl esters (FAME), including RME, are renewable fuels commonly used from low level blends with diesel to full substitution. They strongly reduce the net carbon dioxide emissions. It is largely unknown how the emissions and characteristics of PM get altered by the combined effect of adding biodiesel to diesel and implementing modern engine concepts that reduce nitrogen oxides (NOx) emissions by exhaust gas recirculation (EGR). Therefore, the exhaust from a single-cylinder Scania D13 heavy-duty (HD) diesel engine fuelled with petroleum-based MK1 diesel, RME, and a 20% RME blend (B20), was sampled while the inlet oxygen concentration was stepped from ambient to very low by varying EGR. Regulated gaseous emissions, mass of total black carbon (BC) and organic aerosol (OA), particle size distributions and the soot nanostructure by means of transmission electron microscopy (TEM), were studied. For all EGR levels, RME showed reduced BC emissions (factor 2 for low and 3-4 for higher EGR) and total particulate number count (TPNC) compared with diesel and B20. B20 was closer to diesel than RME in emission levels. RME opens a significant possibility to utilise higher levels of EGR and stay in the region of low NOx, while not producing more soot than with diesel and B20. Adding EGR to 15% inlet O2 did not affect the nanostructure of PM. A difference between the fuels was noticeable: branched agglomerates of diesel and RME were composed of many primary particles, whereas those of B20 were more often “melted” together (necking)

    Impact of fatty acid coating on the CCN activity of sea salt particles

    No full text
    This study investigates the impact of fatty acids on the cloud condensation nuclei (CCN) activity of sea salt aerosol of initial size 30, 50, 70 or 90 nm. Two of the major fatty acids in the marine environment, palmitic acid (C16) and stearic acid (C18), were investigated along with their unsaturated analogues palmitoleic acid and oleic acid, respectively. Sea salt seed particles were generated by aeration through a diffuser placed inside a sea spray tank. Fatty acids were added to the particles via condensation of fatty acid vapours in a heated flask at different temperatures. The diameters and CCN activity of particles before and after condensation of fatty acids were monitored. Based on the change in mobility diameter, a coating thickness and an organic volume fraction were inferred. Addition of the unsaturated acids to the core sea salt particles did not result in hindered water uptake for any organic volume fractions studied (25–96%) and critical supersaturations generally followed the kappa addition rule assuming a kappa value of zero for the fatty acids and assuming a constant surface tension equal to that of water. For the saturated fatty acids, a deviation from the Zdanovskii, Stokes and Robinson assumption (kappa mixing rule) in the direction of hindered water uptake was observed for organic volume fractions corresponding to thick (25–29 nm) coatings of palmitic acid and even thinner coatings of stearic acid
    corecore